機械学習に意思決定論? ⑥

機械学習に意思決定論? ⑥

<<前の記事に戻る

 

前回までの議論では、OutcomeによるDTの簡素化と意思決定について考察しましたが、

今回は不確実性下の最も一般的な意思決定手法である確率・統計的な観点からの選択について解説します。

 

 

はじめに、次のような問題について考えてみましょう。

「あるメーカーが、A・B・Cの3つの製品のうち1つを選んで生産販売する予定である。それぞれの製品のプロトタイプは完成しており、価格の設定も決定された。また、それぞれの製品に関して、マーケティング調査が行われ、 販売総数0~5,000個の範囲で1,000個単位の販売の確立が予測された。これらの内容は、以下のテーブルにまとめられている。さて、同社は、 A・B・Cの3つの内どの製品を生産販売すれば良いのだろうか?」

 

%e8%a8%98%e4%ba%8b0927-1

表1:製品別の販売量の確立予測と価格

 

この表から、価格と数量を基に売上総額を計算し確率との関係をグラフで書き直してみると、

図2のようになります。

さて、どの製品を生産・販売すべきか明確でしょうか?

%e8%a8%98%e4%ba%8b0927-2

図2:売上総額とその確率

 

 

 

このグラフからは、何となく製品Aが良さそうに見えます。しかし、より大きな売り上げが見込めそうなのは製品Bのようです。また製品Cも、確率はそれほど高くはないものの大きな利益の可能性が見えます。このようにどの製品もそれぞれ善し悪しがありそうで結論に至りません。

 

そこで、図3のように累積確立のグラフで書き直してみました。

%e8%a8%98%e4%ba%8b0927-3

 

図3:売上総額とその累積確率

 

 

さて、いかがでしょうか?

 このグラフは、例えば赤の線(売上目標:$3,000)までの累積確立が、製品Bは30%、製品Cは70%であること意味しています。また逆に見れば、売上目標$3,000以上を見込めるのは、製品Bが70%、製品Cが30%であるとも言えます。さらに、製品Cのグラフの線が常に製品Bの上に来ているということは、どのような売上目標に対しても製品Bの方が常に目標以上の売り上げの可能性を持っていると言う意味です。

従いまして、結果的に製品Bの方が製品Cより確率的に好ましいと言え、このような選択方法をStochastic Dominance(確率による優位性)と呼びます。さらに、一般的な統計量による選択の方法として、目標売上以外にも、平均利益、標準偏差、最少利益、最大利益なども参考にできることから、以下の一覧にまとめておきます。

 

%e8%a8%98%e4%ba%8b0927-04

表4:一般的な統計量の表

 

 

表4では、“平均”という言葉を使いましたが、確率論上の呼び名は“期待値”です。同じような計算を行いますが、平均と期待値は異なる概念です。平均では“客観確率”を用いて計算するのに比べて、期待値では“主観確率”を用います。客観確率とは、例えば正確なサイコロの1の目が出る確率などのように客観的に観測できる確率を指しますが、主観確率とは、一定の期間の中で一度きり起こるような繰り返し観測できるものではない確率を指します。

またこの主観確率は、同じ事象に関して対峙する人ごとに変わることから“主観”という言葉を用いています。さらに主観確率には、対峙する事象に関する個人の思いや期待などが含まれることから、主観確率を用いて計算した平均の値を期待値と呼ぶわけです。

以下、一般的な期待値のフォーミュラを記載しておきます。

%e8%a8%98%e4%ba%8b0927-05

なお、xi は i 番目の事象の値を、pi は i 番目の事象が起こる主観確率を意味する。

 

今回は、不確実性下の意思決定論の中で、最も一般的な確率・統計的な分析手法についてまとめて記載しました。

このような手法で、④で紹介したRP社のラーソン氏のDT分析に適用し、意思決定の戦略を選択することも可能です。  

 

続きを読む>>